Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nong Wang,* Xiang-En Han and Xiao-Guang Wen

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China

Correspondence e-mail:
wangnong05@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.044$
$w R$ factor $=0.105$
Data-to-parameter ratio $=17.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

\{2,4-Dibromo-6-[(2-dimethylaminoethyl-imino)methyl]phenolato\}(thiocyanato)copper(II)

In the mononuclear copper(II) title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{11} \mathrm{H}_{13}{ }^{-}\right.\right.$ $\left.\left.\mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}\right)(\mathrm{NCS})\right]$, the $\mathrm{Cu}^{\mathrm{II}}$ atom is four-coordinated by one imine N , one amine N , and one phenolate O atom of the Schiff base ligand, and by one N atom of a thiocyanate anion in a square planar geometry. In the crystal structure, adjacent molecules are linked through intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds, forming centrosymmetric dimers.

Comment

An extensive effort has been made to prepare and characterize a variety of coordination complexes in an attempt to model the physical and chemical behaviour of coppercontaining enzymes (Reddy et al., 2000). The peculiarity of copper lies in its ability to form complexes with coordination numbers of four, five, and six (Ray et al., 2003; Arnold et al., 2003; Raptopoulou et al., 1998). As a continuation of our own work in this area (Wang \& Li, 2005), the title compound, (I), a copper(II) complex is reported here.

(I)

Compound (I) is mononuclear, as shown in Fig. 1. The Cu atom is four-coordinated by one imine N , one amine N , and one phenolate O atom of the Schiff base ligand, and by one N atom of a thiocyanate anion, resulting in distorted square

Figure 1
The structure of (I), showing 30\% displacement ellipsoids (arbitrary spheres for the H atoms).

Received 20 January 2006
Accepted 20 January 2006

Figure 2

Part of the packing of (I). Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions are shown as dashed lines.
planar CuON_{3} coordination (Table 1). The $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$ bond angle deviates by some $5.61(18)^{\circ}$ from 90° as a result of the strain created by the five-membered chelate ring $\mathrm{Cu} 1 / \mathrm{N} 1 /$ C8/C9/N2.

In the crystal structure, adjacent molecules are linked through intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ interactions (Table 2), forming centrosymmetric dimers (Fig. 2).

Experimental

3,5-Dibromosalicylaldehyde $(0.1 \mathrm{mmol}, \quad 28.0 \mathrm{mg}), \quad N, N$-dimethyl-ethane-1,2-diamine ($0.1 \mathrm{mmol}, 8.8 \mathrm{mg}$), $\mathrm{NH}_{4} \mathrm{NCS}(0.1 \mathrm{mmol}, 7.6 \mathrm{mg})$ and $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 19.9 \mathrm{mg})$ were dissolved in $\mathrm{MeOH}(15 \mathrm{ml})$. The mixture was stirred at room temperature for 1 h to give a red solution. The resulting solution was allowed to stand in air for 13 d , and red needle-shaped crystals of (I) were formed.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}\right)(\mathrm{NCS})\right]$
$M_{r}=470.67$
Monoclinic, $P 2_{1} / n$
$a=7.146$ (1) A
$b=19.213$ (3) \AA
$c=11.229(2) \AA$
$\beta=91.026(2)^{\circ}$
$V=1541.5$ (4) \AA^{3}
$Z=4$
Data collection
Bruker SMART CCD diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.164, T_{\text {max }}=0.775$
12315 measured reflections
$D_{x}=2.028 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1683 reflections
$\theta=2.5-24.9^{\circ}$
$\mu=6.73 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Needle, red
$0.42 \times 0.08 \times 0.04 \mathrm{~mm}$

3180 independent reflections
2014 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.067$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-8 \rightarrow 8$
$k=-24 \rightarrow 23$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0345 P)^{2}\right. \\
\quad+0.8169 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.60 \mathrm{e}^{2} \AA^{-3} \\
\Delta \rho_{\min }= \\
\end{array}{ }^{2} 0.52 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.908(3)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$1.932(4)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$1.927(5)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.055(4)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$91.61(18)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$174.47(18)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$92.55(16)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 2$	$91.87(19)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$173.3(2)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$84.39(18)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{Br}^{\mathrm{i}}$	0.96	2.88	$3.676(5)$	141

Symmetry code: (i) $-x+1,-y,-z$.
H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \mathrm{~A}$, and with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors acknowledge the Lanzhou Jiaotong University, People's Republic of China, for funding this study.

References

Arnold, P. J., Davies, S. C., Durrant, M. C., Griffiths, D. V., Hughes, D. L. \& Sharpe, P. C. (2003). Inorg. Chim. Acta, 348, 143-149.
Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Raptopoulou, C. P., Papadopoulos, A. N., Malamatari, D. A., Ioannidis, E., Moisidis, G., Terzis, A. \& Kessissoglou, D. P. (1998). Inorg. Chim. Acta, 272, 283-290.
Ray, M. S., Bhattacharya, R. B., Chaudhuri, S., Righi, L., Bocelli, G. \& Mukhopadhyay, G. \& Ghosh, A. (2003). Polyhedron, 22, 617-624.
Reddy, P. A. N., Datta, R. \& Chakravarty, A. R. (2000). Inorg. Chem. Commun. 3, 322-324.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS, Inc., Madison, Wisconsin, USA.
Wang, N. \& Li, J.-P. (2005). Acta Cryst. E61, m1223-m1225.

